Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8008): 511-514, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632480

RESUMO

Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs1,2. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H3+ and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported3. CWISEP J193518.59-154620.3. (W1935 for short) is an isolated brown dwarf with a temperature of approximately 482 K. Here we report James Webb Space Telescope observations of strong methane emission from W1935 at 3.326 µm. Atmospheric modelling leads us to conclude that a temperature inversion of approximately 300 K centred at 1-10 mbar replicates the feature. This represents an atmospheric temperature inversion for a Jupiter-like atmosphere without irradiation from a host star. A plausible explanation for the strong inversion is heating by auroral processes, although other internal and external dynamical processes cannot be ruled out. The best-fitting model rules out the contribution of H3+ emission, which is prominent in Solar System gas giants. However, this is consistent with rapid destruction of H3+ at the higher pressure where the W1935 emission originates4.

2.
Nature ; 625(7993): 51-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967578

RESUMO

WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M⊕ and Jupiter-like radius of about 0.94 RJ (refs. 1,2), whose extended atmosphere is eroding3. Previous observations showed evidence for water vapour and a thick, high-altitude condensate layer in the atmosphere of WASP-107b (refs. 4,5). Recently, photochemically produced sulfur dioxide (SO2) was detected in the atmosphere of a hot (about 1,200 K) Saturn-mass planet from transmission spectroscopy near 4.05 µm (refs. 6,7), but for temperatures below about 1,000 K, sulfur is predicted to preferably form sulfur allotropes instead of SO2 (refs. 8-10). Here we report the 9σ detection of two fundamental vibration bands of SO2, at 7.35 µm and 8.69 µm, in the transmission spectrum of WASP-107b using the Mid-Infrared Instrument (MIRI) of JWST. This discovery establishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending the temperature range of exoplanets exhibiting detected photochemistry from about 1,200 K down to about 740 K. Furthermore, our spectral analysis reveals the presence of silicate clouds, which are strongly favoured (around 7σ) over simpler cloud set-ups. Furthermore, water is detected (around 12σ) but methane is not. These findings provide evidence of disequilibrium chemistry and indicate a dynamically active atmosphere with a super-solar metallicity.

3.
Nature ; 624(7991): 263-266, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931645

RESUMO

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5-7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

4.
Astrobiology ; 23(4): 415-430, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37017441

RESUMO

In this work, the viability of the detection of methane produced by microbial activity in low-temperature hydrothermal vents on an Archean-Earth-like exoplanet in the habitable zone is explored via a simplified bottom-up approach using a toy model. By simulating methanogens at hydrothermal vent sites in the deep ocean, biological methane production for a range of substrate inflow rates was determined and compared to literature values. These production rates were then used, along with a range of ocean floor vent coverage fractions, to determine likely methane concentrations in the simplified atmosphere. At maximum production rates, a vent coverage of 4-15 × 10-4 % (roughly 2000-6500 times that of modern Earth) is required to achieve 0.25% atmospheric methane. At minimum production rates, 100% vent coverage is not enough to produce 0.25% atmospheric methane. NASA's Planetary Spectrum Generator was then used to assess the detectability of methane features at various atmospheric concentrations. Even with future space-based observatory concepts (such as LUVOIR and HabEx), our results show the importance of both mirror size and distance to the observed planet. Planets with a substantial biomass of methanogens in hydrothermal vents can still lack a detectable, convincingly biological methane signature if they are beyond the scope of the chosen instrument. This work shows the value of coupling microbial ecological modeling with exoplanet science to better understand the constraints on biosignature gas production and its detectability.


Assuntos
Fontes Hidrotermais , Planetas , Meio Ambiente Extraterreno , Exobiologia , Temperatura , Metano
5.
Astrobiology ; 21(4): 481-489, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513037

RESUMO

Although the search for habitability is a much-vaunted objective in the study of planetary environments, the material requirements for an environment to be habitable can be met with relatively few ingredients. In this hypothesis paper, the minimum material requirements for habitability are first re-evaluated, necessarily based on life "as we know it." From this vantage point, we explore examples of the minimum number of material requirements for habitable conditions to arise in a planetary environment, which we illustrate with "minimum habitability diagrams." These requirements raise the hypothesis that habitable conditions may be common throughout the universe. If the hypothesis was accepted, then the discovery of life would remain an important discovery, but habitable conditions on their own would be an unremarkable feature of the material universe. We discuss how minimum units of habitability provide a parsimonious way to consider the minimum number of geological inferences about a planetary body, and the minimum number of atmospheric components that must be measured, for example in the case of exoplanets, to be able to make assessments of habitability.


Assuntos
Exobiologia , Planetas , Meio Ambiente Extraterreno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...